

AFRL-IF-RS-TR-2004-219

Final Technical Report
July 2004

CONTROLLING COMPUTATIONAL COST:
STRUCTURE, PHASE TRANSITIONS AND
RANDOMIZATION

Cornell University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K274

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-219 has been reviewed and is approved for publication

APPROVED: /s/

DANIEL E. DASKIEWICH
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JULY 2004

3. REPORT TYPE AND DATES COVERED
Final Apr 00 – Dec 03

4. TITLE AND SUBTITLE
CONTROLLING COMPUTATIONAL COST: STRUCTURE, PHASE
TRANSITIONS AND RANDOMIZATION

6. AUTHOR(S)
Bart Selman

5. FUNDING NUMBERS
C - F30602-00-2-0530
PE - 62301E
PR - ANTS
TA - 00
WU - 06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
Upson Hall
Ithaca New York 14853

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-219

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Daniel E. Daskiewich/IFTB/(315) 330-7731/ Daniel.Daskiewich@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report describes Cornell’s contribution to the ability to build information systems that use highly decentralized and
autonomous negotiation of tasks for distributed resource allocation. This effort extends phase transition analysis to
structured domains and generalized constraint satisfaction tasks. The effort was devoted to connecting frameworks for
multi-agent negotiation based systems with the research on analytical and empirical computational complexity. The
general goal was to improve the expressiveness and scalability of complex distributed systems by exploiting
computational hardness awareness in both the design and operation of the systems.

15. NUMBER OF PAGES
46

14. SUBJECT TERMS
Computational Complexity, Autonomous Negotiation, constraint Satisfaction Problems

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

 Table of Contents

1. Summary ... 1

2. ANTs Sensor Networks Domain and Negotiation Protocols 3

2.1 Phase Transition and Complexity Profiles for SensorDCSP........................... 5
2.2 Randomization and Restart Strategies... 8
2.3 Active Delaying of Messages .. 9
2.4 The Effect of the Communication Network Data Load 11
2.5 Modeling Spatial Structure of the Sensor Networks 14
2.6 Complexity Analysis for SensorDCSP.. 17
2.7 Negotiation Techniques for Dynamic Systems ... 20

3. ANTS Autonomic Logistics - Resource Enabling in CAMERA 24

3.1 Resource Enabling – Formal Problem Statement.. 25
3.2 Resource Enabling via Extended Pseudo-Boolean Encoding 26
3.3 Extended Pseudo-Boolean Encoding with Changing Time Resolution 28
3.5 Complexity, Implementation, and Integration... 33

4. Identifying and Exploiting Critical Resources ... 35

5. Conclusions... 38

References... 39

 ii

List of Figures

Figure 1: A SensorDCSP problem instance: (a) Visibility graph; (b) Compatibility graph;

(c) Feasible sensors/mobiles assignment... 3
Figure 2: Percentage of satisfiable instances depending on the density parameter for the

visibility graph (Pv) and the density parameter for the compatibility graph (Pc). . 6
Figure 3: Mean solution time with respect to Pc and Pv for ABT and AWC algorithms. .. 7
Figure 4: Mean time to solve a hard satisfiable instance by ABT using restarts, plotted

with different cutoff times. .. 8
Figure 5: Median time and number of messages needed to solve a hard satisfiable

instance (point A in Figure 3) with AWC when agents add random delays in
outgoing messages. The horizontal plane represents the median time (or the
median number of messages) for the case where no delay is added (p = 0). 9

Figure 6: Median time for AWC and ABT to solve a hard satisfiable (point B in Figure 3)
instance when agents add random delays in outgoing messages. The horizontal
plane represents the median time for the case where no delay is added (p = 0). 10

Figure 7: Median time and number of messages needed to solve a hard satisfiable
instance with AWC depending on the percentage of fixed-delay inter-agent
communication links. .. 11

Figure 8: Cumulative density functions (CDF) of the time needed to solve hard instances
for their respective algorithms, AWC, ABT and ABT with restarts under
different link delay models. ... 12

Figure 9: k-compatibility and k-visibility windows. ... 15
Figure 10: Locality of communication and visibility. .. 15
Figure 11: Percentage of satisfiable instances depending on density parameters for the

visibility graph (Pv) and the compatibility graph (Pc): (a) Plot for different values
of Pc and Pv ; (b) Plot for equal Pc and Pv. .. 18

Figure 12: Mean solution time with respect to Pc and Pv for the AWC on instances with
25 sensors, 5 mobiles, kc = 1 and kv = 2... 18

Figure 13: (a) Percentage of satisfiable instances and (b) Mean solution time for the
AWC on (polynomial) instances with 25 sensors, 5 mobiles, kc = 1 and kv = 2. 19

Figure 14: Mean solution time with respect to the order of the problem (size of the grid)
for AWC on problem instances from the phase transition regions for kc = kv =
2,3,4,5. ... 20

Figure 15: Graphical representation of the dynamic model, showing both the sensor grid,
and the extended area in which the mobiles are moving and from the borders of
which the movement is reflecting.. 21

Figure 16: Dynamics of two problems, located at 70% and 50% of satisfiability ratio: (a)
and (c) show the cumulative probability distributions for the solution repairing
and the naive solving approach; (b) and (d) plot time differences to solve
between the two approaches. ... 22

Figure 17: CAMERA/ATTEND architecture... 25
Figure 18: Snapshots of the CAMERA tool presenting results of negotiations without (a)

and with (b) extended encoding E2. .. 34

 iii

List of Tables

Table 1: Estimated mean and variance, from the empirical distributions, of the number of

messages for different algorithms and different inter-agent link delay models
when solving a hard satisfiable instance.. 13

Table 2: Estimated mean and variance, from the empirical distributions, of the solution
time for different algorithms and different inter-agent link delay models when
solving a hard satisfiable instance. .. 13

Table 3: Parameters of the Autonomous Logistic problems... 33
Table 4: Description complexity of the encodings. .. 33
Table 5: Time bounds for solving CSPs in the various scenarios considered in this work.

... 37

 1

1. Summary

The mission of our group has been connecting the work on negotiation frameworks with
the research on analytical and empirical computational complexity. The general goal has
been to use our findings in both the design and operation of complex distributed systems,
improving their expressiveness and scalability based on principled controlled hardness
awareness. In particular, our goal was to study the impact of problem structure on the
computational complexity of the problem, and to exploit this connection in both problem
modeling and solving.

At various stages of the project, our work has been dedicated to both:

1. ANTS (short for Autonomous Negotiation Teams) Sensor Networks domain and
negotiation protocols, and

2. ANTS Autonomic Logistics domain.

In both domains, our work has focused on identifying the domain’s structural features
that most affect the complexity of the negotiation. Starting with the specification of the
challenge problem, our work in Sensor Networks domain has been focused on:

1. Generic research on accelerating Constraint Satisfaction Problem (CSP) problem

solvers by analysis and exploiting problem’s structure.

2. Formal specification of agents’ negotiation abilities, and the negotiation tasks.

Abstracting the sensor network negotiation tasks as Distributed Constraint
Satisfaction Problem (DCSP) and Constraint Optimization (COP).

3. Developing fully-functional discrete-event simulator for simulating negotiation

between sensor agents upon a realistically modeled network, and studying three-
side connections between (1) structural properties of the negotiation tasks; (2)
network properties, and (3) relative advantage of various negotiation strategies.

4. Comparative evaluation of several backtrack-style and local search negotiation

strategies on various negotiation tasks.

5. Formal complexity analysis of the negotiation problem in sensor networks,
specifying the precise complexity hierarchy of the problem sub-classes as a
function of different structural parameters of the problem.

6. Analysis of practical scalability of the negotiation protocols by studying the form

of their phase transition behavior, again, as a function of different structural
parameters of the problem.

 2

In the second part of the program, the effort of our group has been directed towards
ANTs Autonomic Logistics domain. In Sensor Networks domain our focus was mainly
on identifying scalable negotiating formations and hardness aware problem solving. In
Autonomic Logistics domain we focused on exploiting problem structure right at the
level of problem modeling. The conceptual idea was to exploit sophisticated knowledge
representation techniques for compact and informative problem encoding. The results
achieved by our group show that contribution of such sophisticated encodings can be
two-fold. First, principle applicability of the given problem solvers can be extended to a
wider range of negotiation tasks. Second, the performance of these problem solvers can
be dramatically improved.

Joining other contractors involved in Autonomic Logistics domain, and working closely
with the ISI contractors, our work in Autonomic Logistics domain was focused on:

1. Generic research on critical resources that form the core of combinatorics in hard
real-world problem instances. Development and computational analysis of
algorithms for discovering critical resources in the given problem instances.

2. Study of the CAMERA (Coordination and Management Environments for

Responsive Agents) tool modules, a real-time resource management architecture
providing a basis for integrating technologies developed by the ISI (Information
Sciences Institute) contractors.

3. Analysis of the SNAP (Schedules Negotiated by Agent Planners) problem

domain. SNAP is a specialized system for scheduling flight operations developed
by the ISI contractors on top of the CAMERA tool, and used as the practical
benchmark for Autonomic Logistics domain.

4. Analysis of ATTEND (Analytic Tools to Evaluate Negotiation Difficulty)

pseudo-boolean encoding (ISI) for CAMERA resource management problems,
focusing on “lessons learnt” from the SNAP domain.

5. Formal development of a pseudo-boolean extension Cornell-1 to the ATTEND

encoding. Cornell-1 allowed CAMERA/SNAP to enable resource/task allocation
by taking into account the dynamic properties of the resources. More formally,
Cornell-1 enabled CAMERA to deal not only with “negotiation for scheduling”,
but also “negotiation for planning” problem, raising significantly the expressivity
of the system.

6. Further extension of the pseudo-boolean encoding. The pseudo-boolean extension

Cornell-2 enriched its predecessor by addressing resource abstraction due to
changing resolution of the negotiation time scale.

7. Implementation, testing, and performance evaluation of Cornell-2, followed by its

deployment to the ISI contractors for successful integration with the CAMERA
tool.

 3

2. ANTs Sensor Networks Domain and Negotiation Protocols

Our principle approach to analyzing negotiation protocols for Sensor Networks domain
has been based on intuitive reduction of this negotiation problem to the general problem
of Distributed Constraint Satisfaction (or DisCSP, for short) [YH00]. The objective has
been to adapt general purpose distributed negotiation protocols, and to analyze the
complexity of the corresponding class of problems (which we call SensorDCSP) both
analytically and empirically. The main goal has been to study practical scalability of
various distributed negotiation strategies as a function of the qualitative structure of the
problem.

In a DisCSP problem, variables and constraints are distributed among the different
autonomous agents that have to solve the problem. A DisCSP is defined as follows: (1) A
finite set {A1, …,An} of agents; (2) A set {P1, …,Pn} of local (private) CSPs, where CSP
Pi pertains to agent Ai (and Ai is the only agent that can modify the values assigned to the
variables of Pi); (3) A global CSP, each of whose variables is also a variable of one of the
local CSPs.

In the Sensor Network domain we have multiple sensors S = {s1, …,sm} and multiple
mobile targets T = {t1, …,tn} (or mobiles, for short) which are to be tracked by the
sensors. The goal is to allocate three sensors to track each mobile node, such that all these
triplets of sensors are pair-wise disjoint and consistent with two sets of constraints:
visibility constraints and compatibility constraints. Figure 1 shows an example with six
sensors and two mobiles. Each mobile has a set of sensors that can possibly detect it, as
depicted by the bipartite visibility graph in Figure 1(a). In addition, it is required that
each mobile be assigned three sensors that satisfy a compatibility relation with each
other; this compatibility relation is depicted by the graph in Figure 1(b). Finally, it is
required that each sensor only track at most one mobile. A possible solution is depicted in
Figure 1(c), where the set of three sensors assigned to each mobile is indicated by the
lighter edges.

 (a) (b) (c)

Figure 1: A SensorDCSP problem instance: (a) Visibility graph; (b) Compatibility graph; (c) Feasible

sensors/mobiles assignment.

 4

Our DisCSP encoding of the Sensor Network problem is called SensorDCSP and is as
follows: Each mobile is associated with a different agent. There are three different
variables per agent, one for each sensor that we need to allocate to the corresponding
mobile. The value domain of each variable is the set of sensors that can detect the
corresponding mobile. The intra-agent constraint between the variables of one agent is
that the three sensors assigned to the mobile must be distinct and pair-wise compatible.
The inter-agent constraints between the variables of different agents are that a given
sensor can be selected by at most one agent. In our implementation of the DisCSP
algorithms, this encoding is translated to an equivalent formulation where we have three
virtual agents for every real agent, each virtual agent handling a single variable.

In our work we consider two probably most popular DisCSP algorithms, Asynchronous
Backtracking (ABT) [YDIK92], and Asynchronous Weak-Commitment (AWC) [Yokoo95].
We provide a brief overview of these algorithms. In what follows, the neighbors of a
given agent are the agents with whom it shares constraints.

ABT is a distributed asynchronous version of a classical backtracking negotiation
algorithm. This algorithm needs a static agent ordering that determines an ordering of the
variables of the problem. Agents use two kinds of messages for solving the problem,
namely the nogood messages and ok messages. Agents initiate the negotiation by
assigning an initial value to their variables. An agent changes its value when it detects
that it is not consistent with the assignments of higher priority neighbors, and so it
maintains an agent view, which consists of the variable assignments of its higher priority
neighbors.

Each time an agent assigns a value to its variable, it issues the ok message to inform its
lower-priority neighbors of this new assignment. If an agent is unable to find an
assignment that is consistent with the assignments of all of its higher-priority neighbors,
it sends a nogood message, which consists of a subset of that agent's view that makes it
impossible for the agent to find a consistent assignment for itself; the nogood message is
sent to the lowest-priority agent among all the (higher-priority) agents in that particular
subset of that agent's view. Receipt of a nogood message causes the receiver agent to
record the content of that message as a new constraint and then try to find an assignment
that is consistent with its higher-priority neighbors and with all of its recorded
constraints. If the top-priority agent is forced to backtrack (which implies that its
assignment is inconsistent with at least one of its recorded constraints, since there is no
higher-priority neighbor with which its assignment could possibly clash), this means that
the problem has no solution. If, on the other hand, the system reaches a state where all
agents are happy with their current assignments (no nogood messages are generated), this
means that the agents have found a solution.

AWC can be seen as a modification of the ABT algorithm. The primary differences are as
follows: A priority value is determined for each variable, and the priority value is
communicated using the ok message. If an agent's current assignment is inconsistent with
that agent's view, the agent selects a new consistent assignment that minimizes the
number of constraint violations with lower-priority neighbors. When an agent cannot find

 5

a consistent value and generates a new nogood, it sends the nogood message to all its
neighbors and raises its priority by one unit above the maximal priority of its neighbors.
Then it finds an assignment that is consistent with the assignments of its higher-priority
neighbors and informs its neighbors by sending them ok messages. If no new nogood can
be generated, the agent waits for the next message.

2.1 Phase Transition and Complexity Profiles for SensorDCSP

Our analytical analysis [BKGS01] showed that:

1. SensorDCSP is NP-complete, since a known NP-complete problem of partitioning
a graph into cliques of size three can be reduced to it.

2. In limiting case in which every pair of sensors is compatible SensorDCSP is

solvable in polynomial time as each such problem can be reduced to a feasible
flow problem in a bipartite graph.

For our experiments, we have defined a random distribution of instances of SensorDCSP,
and developed a parameterized instance generator for this random distribution that
generates DisCSP-encoded instances of the sensor network negotiation problem. An
instance of this problem is generated from two different random graphs, the visibility
graph and the compatibility graph. Apart from the number of mobiles and number of
sensors, we also specify parameters controlling edge density of the visibility graph Pv and
edge density of compatibility graph Pc. Each of these parameters specifies the
independent probability of including a particular edge in the corresponding graph. As
these two graphs model the resources available to solve the problem, Pv and Pc
completely control the number of constraints in the generated instances.

For the problem of negotiation in Sensor Networks, as well as in any other networked
environment, it is important to factor in the physical characteristics of the distributed
environment. For example, the traffic patterns and packet-level behavior of networks can
affect the order in which messages from different agents are delivered to each other,
significantly impacting the distributed search process. To investigate these kinds of
effects, we have developed an implementation of the algorithms ABT and AWC
using the Communication Networks Class Library (CNCL). This library provides a
discrete-event network simulation environment with a complete set of communication-
oriented classes. The network simulator allows us to realistically model the message-
delivery mechanisms of varied distributed communication environments ranging from
wide-area computer networks to wireless sensor networks.

In our experiments we considered different sets of instances with 3 mobiles and 15
sensors. Every set contained 19 instances and was generated with a different pair of
values for the parameters Pc and Pv (ranging from 0.1 to 0.9), providing us with 81 data

 6

points. Each instance has been executed 9 times, each time with a different random seed.
The results reported in this section were obtained using a sequential value selection
function for the different algorithms.

The communication links used for communication between virtual agents of different real
agents (inter-agent communication) are modeled as random-delay links, with a negative-
exponential distribution and a mean delay of 1 time unit. The communication links used
by the virtual agents of the same real agent (intra-agent communication) are modeled as
fixed delay links, with a delay of 10-3 time units. Here we use fixed-delay links because
we assume that a set of virtual agents work inside a private computation node and this
allows virtual agents to communicate with each other using dedicated communication
links. This scenario could correspond to a heavy-loaded network situation where inter-
agent delay fluctuations are due to the queuing process on intermediate systems. The
difference of a factor of 1000 between the two delays reflects that intra-agent
computation is usually less expensive than inter-agent communication. Later we will
show how different delay-distribution models over the inter-agent communication links
can impact the performance of the algorithms.

Figure 2: Percentage of satisfiable instances depending on the density parameter for the visibility
graph (Pv) and the density parameter for the compatibility graph (Pc).

Figure 2 shows the ratio of satisfiable instances as a function of Pc and Pv. When both
probabilities are low, most of the generated instances are unsatisfiable. For high
probabilities, however, most of the instances are satisfiable. The transition between the
satisfiable and unsatisfiable regions occurs within a relatively narrow range of these
control parameters, analogous to the phase transition in CSP problems.

Also consistent with other CSP problems is our observation that the hardest instances for
these backtracking algorithms generally occur in the region where the phase transition
occurs. Figure 3 shows the mean solution time with respect to the parameters Pc and Pv:
The hardest instances lie on the diagonal that defines the phase-transition zone, with a

 7

peak for instances with a low Pc value. The dark and light solid lines overlaid on the
mesh depict the location of the iso-lines for Psat = 0.2 and Psat = 0.8, respectively, as per
the phase-transition surface of Figure 2. As mentioned earlier, the SensorDCSP problem
is NP-complete only when not all sensors are pair-wise compatible (i.e., when Pc < 1).
Therefore, the parameter Pc could separate regions of different mean computational
complexity, as in other mixed P/NP-complete problems [MZKST99,Walsh02]. This is
particularly noticeable in the mean-time distribution for AWC shown in Figure 3.

Figure 3: Mean solution time with respect to Pc and Pv for ABT and AWC algorithms.

We observe that the mean times to solve an instance with AWC appear to exceed those
with ABT by an order of magnitude. At first glance, this is a surprising result,
considering that the AWC algorithm is a refinement of ABT and that results reported for
satisfiable instances in the literature point to better performance for AWC [YDIK98,
YH00]. One plausible explanation for the discrepancy is the fact that our results deal with
both satisfiable and unsatisfiable instances. On further investigation, we found that while
AWC does indeed outperform ABT on satisfiable instances, it is much slower on
unsatisfiable instances. This result seems consistent with the fact that the agent hierarchy
on ABT is static, while for AWC the hierarchy changes during problem solving;
consequently, AWC might be expected to take more time to inspect all the search space
when unsatisfiable instances are considered.

 8

Figure 4: Mean time to solve a hard satisfiable instance by ABT using restarts, plotted with different

cutoff times.

2.2 Randomization and Restart Strategies.

As a part of our computational analysis we studied the effect of adding a restart strategy
[GSK98] to ABT. The introduction of a randomized value selection function was directly
assumed in its original formulation [YDIK98]. In extensive experiments we performed
with our test instances, we found that the randomized selection function is indeed better
than a sequential value selection. On the other side, randomization can result in greater
variability in performance, and thus ABT should be equipped with a restart strategy. We
have not defined a restart strategy for AWC, because the dynamic priority strategy of
AWC can be viewed as a kind of built-in partial restart strategy. In the results reported in
the rest of the paper, both ABT and AWC use randomized value selection functions.

To study the benefits of the proposed restart strategy for ABT, we have used restarts in
solving hard satisfiable instances with ABT. Figure 4 shows the mean time needed to
solve a hard satisfiable instance, together with the corresponding 95% confidence
intervals, for a number of cutoff times. We observe that there is clearly an optimal restart
cutoff time that gives the best performance. As will be argued later, use of restart
strategies is essential when dealing with the delays that occur in real communication
networks, given the high variance in the solution time due to randomness of link delays in
the communication network.

 9

2.3 Active Delaying of Messages

A novel way of randomizing the search in the context of DisCSP algorithms is to
introduce forced delays in the delivery of messages. Delays introduce randomization
because the order in which messages from different agents reach their destination agents
determines the order in which the search space is traversed. More concretely, every time
an agent has to send a message, it follows the following procedure:

with probability p:
 d = D ◊ (1+r)
else (with probability (1-p))
 d = D

Transmitting message m with delay D means that the agent requires its communication
interface to add D seconds to the delivery time currently scheduled for m and all the
successors of m in the message queue. The latter preserves the order of transmission and
reception for the messages sent from one agent to another agent. The parameter r is the
fraction of the communication delay (D) added by the agent.

In this section we present the results of our experiments with the AWC and ABT
algorithms, and active delaying of messages. The amount of delay added by the agents is
a fraction r of the delay in the inter-agent communication links. Here, we consider the
case where all the inter-agent communication links have fixed delays of 1 time unit,
because we want to isolate the effect of the delay added by the agents. This is in contrast
to the experiments described elsewhere in this section, where we report the effects of
allowing variable inter-agent delays.

Figure 5: Median time and number of messages needed to solve a hard satisfiable instance (point A in
Figure 3) with AWC when agents add random delays in outgoing messages. The horizontal plane

represents the median time (or the median number of messages) for the case where no delay is added
(p = 0).

 10

Figure 5 shows the results of using AWC to solve a hard satisfiable instance from our
SensorDCSP domain (namely, the one that corresponds to point A in Figure 3). The
solution time and the number of messages are plotted for various values of p, the
probability of adding a delay, and r, the fraction of delay added with respect to the delay
of the link. The horizontal plane cutting the surface shows the median time needed by the
algorithm when we consider no added random delays (p=0, r=0). We see that agents can
indeed improve the performance of AWC by actively introducing additional, random
delays when exchanging messages. The need to send messages during the search process
is almost always reduced when agents add random delays; in the best case the number of
messages delivered can be as much as a factor of 3 smaller than in the worst case.
Perhaps more surprisingly, the solution time can also improve if the increase in delay (r)
is not too high.

Figure 6 shows the results with AWC (left) and ABT (right) for a hard satisfiable
instance (namely, the one that corresponds to point B in Figure 3). We observe that the
performance of AWC is improved in a greater number of cases than that of ABT.
Moreover, in the best case the solution time is smaller than that in the worst case by a
factor of 2.25 for AWC and 1.63 for ABT. It appears that AWC benefits to a greater
extent overall than ABT when it comes to the incorporation of delays added by agents.
The reason for this could be the ability of AWC to exploit randomization via its
inherently restarting search strategy.

Figure 6: Median time for AWC and ABT to solve a hard satisfiable (point B in Figure 3) instance
when agents add random delays in outgoing messages. The horizontal plane represents the median

time for the case where no delay is added (p = 0).

 11

2.4 The Effect of the Communication Network Data Load

As described in the previous section, when working on a communication network with
fixed delays, the performance of AWC can be improved, depending on the amount of
random delay addition that the agents introduce into the message delivery system. In real
networks, however, the conditions of data load present in the communication links used
by the agents cannot always be modeled with fixed-delay links. It would thus seem
worthwhile to determine how differences in communication network environments can
affect the performance of the algorithms. In Section 2.3 we discussed inter-agent
communication links with random, exponentially distributed delays. In this section we
study the effect produced in the performance of DisCSP algorithms by considering delay
distributions corresponding to different traffic conditions. To study how exponentially
distributed delays affect the performance with respect to fixed delays, we can consider
intermediate situations in which some of the inter-agent links have a fixed delay and the
rest are exponentially distributed.

Figure 7 shows how the median time and number of messages needed by AWC for
solving a hard satisfiable instance with 4 mobiles and 15 sensors vary with the percentage
of inter-agent communication links with a fixed delay. The rest of the inter-agent
communication links are assumed to have random, exponentially distributed delays. The
performance of AWC is worst when 100% of the links have a fixed delay, indicating that
the conditions of the network affect the performance of the algorithm. An element of
randomness in the delay distributions clearly improves the performance of AWC. In
addition, observe that there is a fairly good correlation between the number of messages
and the time needed, which suggests that an increase or decrease in the solution time is
mainly due to a change in the number of messages exchanged.

Figure 7: Median time and number of messages needed to solve a hard satisfiable instance with
AWC depending on the percentage of fixed-delay inter-agent communication links.

 12

Figure 8: Cumulative Density Functions (CDF) of the time needed to solve hard instances for their
respective algorithms, AWC, ABT and ABT with restarts under different link delay models.

We now examine various link-delay distributions that can be used to model
communication network traffic. Because of their attractive theoretical properties,
negative-exponential distributions of arrival times have traditionally been used to model
data traffic. It has been shown, however, that although these models are able to capture
single-user-session properties, they are not suitable for modeling aggregate data links in
local or wide-area network scenarios [CB97,LLWW94, Paxson97]. In view of this, we
have simulated network delays according to three different models for the inter-arrival
time distribution: the aforementioned negative-exponential distribution, the log-normal
distribution, and the Fractional Gaussian Noise (FGN) distribution [ST94].

The log-normal distribution can be used to obtain distributions with any desired variance,
whereas FGN processes are able to capture crucial characteristics of the Internet traffic,
such as long-range dependence and self-similarity that do not lend themselves to other
models. We synthesize FGN from a-stable distributions with typical parameter values of

 13

H=0.75 and d=0.4. Figure 9 shows the Cumulative Density Functions (CDF) of the time
required for three algorithms (AWC, ABT, and ABT with restarts) to solve hard instances
when all the inter-agent communication links have delays modeled as fixed, negative
exponential, and log-normal. The means were nearly identical, but the variances were
quite different. Table 1 presents the estimated mean and variance of the number of
messages exchanged when using each of the three aforementioned algorithms, together
with several different inter-agent link-delay distributions, to solve the same hard instance.
The estimated mean and variance of the solution time for the same scenarios are given in
Table 2. The results in Figure 9 and Tables 1 and 2 show that the delay distributions have
an algorithm-specific impact on the performance of both AWC and basic ABT.

Table 1: Estimated mean and variance, from the empirical distributions, of the number of messages
for different algorithms and different inter-agent link delay models when solving a hard satisfiable

instance.

Table 2: Estimated mean and variance, from the empirical distributions, of the solution time for
different algorithms and different inter-agent link delay models when solving a hard satisfiable

instance.

For the basic ABT, the solution time on hard instances becomes worse when channel
delays are modeled by random distributions as opposed to the fixed delay case. The
greater the variance of the link delay, the worse ABT performs. However, introducing the
restart strategy has the desirable effect of improving the performance of ABT.
Furthermore, ABT with restarts is fairly robust and insensitive to the variance in the link
delays. AWC behaves differently from the basic ABT. On hard instances, having
randomization in the link delays improves the solution time compared to the fixed delay
channel. Likewise, the mean solution time for AWC is extremely robust to the variance
in communication link delays, although the variance of solution time is slightly affected
by this. In general, we found that on satisfiable instances, AWC always performs
significantly better than both basic and restarts-enhanced ABTs. Therefore, AWC appears
to be a better candidate in situations where most instances are likely to be satisfiable, and
where we cannot avoid random delays in the links.

 14

2.5 Modeling Spatial Structure of the Sensor Networks
Our analysis of Sensor Network problems provides us with the first results on behavior of
distributed CSP algorithms in real-world distributed applications. Observe that the very
concrete specification of the SensorDCSP problem helps us both to analyze its
computational complexity, and to establish coherent experiments for empirical analysis.
However, getting closer to the real-world tracking systems, one may have to further
specify the properties of the domain. The main information that we believe should be
captured in analysis of various tracking systems is the spatial properties of both
communication between the sensors and visibility of the mobiles. Two reasons make
capturing this information essential:

1. Given spatial limitations for both communication between the sensors and
visibility of the mobiles, the complexity analysis for general SensorDCSP
provides only upper bounds on the complexity of any spatially-limited
SensorDCSP. In addition, deriving conclusions on various sub-classes of
spatially-limited SensorDCSP from the empirical results on general SensorDCSP
is not straightforward whatsoever. In particular, this makes it hard to analyze
scalability of the negotiation algorithms with respect to real-life tracking systems.

2. The overall goal of any tracking system is to track a set of moving objects, and

this set is not necessarily constant over time (e.g., some tracked objects run out of
the region covered by the sensors, while some new objects are getting into this
region). Performance analysis of such a dynamic system is impossible without
some realistic assumptions about the dynamics of the moving objects, which in
turn can be specified only with respect to some concrete spatial model of
SensorDCSP.

In addition, spatial nature of the problem instances is likely to lead to inherently
decomposable problems, making adopting the general-purpose DisCSP-based negotiation
protocols even more attractive. Influenced by the above motivation and the properties of
a recently studied challenge problem for distributed tracking systems, we introduce a
grid-based SensorDCSP problem (or GridDCSP, for short), and perform both analytical
analysis of this problem and empirical study of DisCSP algorithms on both static and
dynamic settings of this problem [Grid04].

The spatial model of the sensor network distributed negotiation in GridDCSP inherits the
core properties of the UMass and our test beds: As before, we have multiple sensors,
multiple targets which are to be tracked by the sensors subject to visibility and
compatibility constraints, and the goal of the negotiation between agents associated
controlling the sensors is to allocate three sensors to track each target, while keeping
these triplets of sensors pair-wise disjoint. However, now the visibility and compatibility
constraints have a close relationship with the physical limitations of the sensors and the
properties of the terrain on which the sensors are located.

In GridDCSP, the sensors are located on the nodes of a uniform grid. This assumption
makes analysis of the problem more coherent, while no generality is lost as some sensors

 15

can be inactive, leading to an arbitrary set of active sensor locations. The targets are
located within the surface enclosed by the grid; this way the grid specifies the generally
trackable region.

Figure 9: k-compatibility and k-visibility windows.

Figure 10: Locality of communication and visibility.

The physical limitations of the sensors are modeled by the notions of kc-compatibility and
kv-visibility. The kc-compatibility window for a sensor s corresponds to the set of all
sensors that are at most kc general (rectilinear and/or diagonal) hops from s. Similarly, the
kv-visibility window for a target t corresponds to the set of all sensors that are at most k
general hops around t. For example, the black sensors in Figures 9(a) and 9(b) correspond
to 1-compatibility and 2-compatibility windows for the gray sensor, while the black
sensors in Figures 9(c) and 9(d) correspond to 1-visibility and 2-visibility windows for
the rectangular sensor, respectively. The compatibility of an GridDCSP-based sensor
network is called kc-restricted if each sensor can communicate only with some sensors
within its kc-compatibility window. The notion of kv-restricted visibility is defined
similarly. For example, thinking of the gray sensor in Figures 10(a) and 10(b) as the only
sensor, the compatibility graphs corresponding to Figure 10(a) and 10(b) are 2-restricted.
Similarly, thinking of the rectangular mobile in Figures 10(c) and 10(d) as the only
mobile, the visibility graphs corresponding to Figure 10(c) and 10(d) are 2-restricted. It is
easy to see that higher values of k for both compatibility and visibility correspond to
more powerful sensors.

While the physical limitations of the sensors in GridDCSP are modeled via the locality
windows, the terrain limitations are modeled via incomplete compatibility and visibility
within the windows. This part of modeling is very similar to our modeling of
SensorDCSP: Within a particular class of locality (kc, kv), representing problems with kc-
restricted compatibility graphs and kv-restricted visibility graphs, the problems can be

 16

ordered according to the local constrainedness, i.e., the expected number of sensors that a
sensor can communicate with and the expected number of sensors that can track a target.

For our experiments, a random distribution of GridDCSP problem instances for a
particular pair of locality parameters (kc, kv) is defined as follows. An instance of the
problem is generated from two different random graphs, the visibility graph and the
communication graph. Apart of setting the number of targets and number of sensors, we
also specify the parameters Pc, Pv ∈ (0,1] that control the edge density of visibility and
communication graphs, respectively. These parameters specify the independent
probability of including a particular edge in the corresponding graph. However, in
GridDCSP these parameters have only local effect: For every pair of sensors s and s’, the
probability Pr(s,s’) for the edge (s,s’) to be a part of the communication graph is given
by:

0 (, ')

Pr(, ')
(, ')

c

c c

dist s s k
s s

P dist s s k
 >

=
≤

 (1.1)

Similarly, for the visibility graph, we define:

0 (,)

Pr(,)
(,)

v

v v

dist t s k
t s

P dist t s k
 >

=
≤

 (1.2)

Intuitively, higher values for Pc and Pv correspond to less problematic terrain conditions
for communication and tracking, respectively.

To conclude, each sensor network problem instance in GridDCSP can be characterized
by the following parameters:

• Order of the problem, characterized by both the number of sensors and the
number of targets.

• Level of decomposition, modeled via the locality of compatibility and visibility,

using the corresponding notions of window restrictness (kc, and kv), and

• Level of constrainedness, modeled via the expected fraction of sensors that can
communicate with a sensor and the expected fraction of sensors that can track a
target, out of the maximally possible such numbers specified by the level of
decomposition. These aspects of the problem instances are modeled using the
uniform probability distributions Pc and Pv with their corresponding means.

 17

2.6 Complexity Analysis for SensorDCSP

After specifying our spatially restricted model for sensor networks, our analysis took
several directions:

1. Worst-case analytical complexity analysis of the GridDCSP sensor network
problems, with respect to the parameters described above.

2. Average-case empirical complexity analysis of various distributed negotiation

protocols with respect to the above parameters and the results obtained for (1).

3. Modification of the previous negotiation algorithms in order to deal with the

dynamic characteristics of the problem, and computational analysis of alternative
approaches to deal with continuously changing set of moving targets.

First, we have showed analytically that the general GridDCSP-based sensor network
problem is NP-complete, thus in worst-case sense it is not easer than its non-spatial
original version. In fact, we showed that GridDCSP is NP-complete even for the case of
2-visibility. We identified, however, several tractable special cases of the problem. First,
we defined the notion of locally complete compatibility graphs, and showed that any
problem with such compatibility graphs is solvable in low polynomial time. Informally,
the compatibility graph is locally complete if any pair of sensors that are able to track
some target can communicate one with another. Second, we have showed that any
problem with 1-restricted visibility is solvable in low polynomial time.

In the first experiment we considered the AWC protocol on different sets of instances
with 25 sensors (grid 5 x 5) and 5 mobiles, with every set generated with different values
for the parameters Pc and Pv with respect to Eqs. (1.1) and (1.2). The parameters Pc and
Pv range from 0.1 to 1 with an increment of 0.1, giving a total number of 100 data sets,
where every set contains 50 instances. Given our analytical complexity results, we
consider three hard subclasses of GridDCSP, corresponding to kv = 2 and kc Œ {1,2,3}.
Figure 11(a) shows the percentage of satisfiable instances as a function of Pc and Pv for
kc = 1,2 and kv = 2. As in the case of general SensorDCSP, when both probabilities are
low, the instances generated are mostly unsatisfiable, while for high probabilities most of
the instances are satisfiable. Both for kc = 1 and kc = 2, the transition between the
satisfiable and unsatisfiable regions occurs within a narrow range of the density
parameters. Observe that, for kc = 1 this range corresponds to significantly higher values
of Pc and Pv , comparatively to these for kc = 2. However, the form of the transition for
various values of kc is very similar (see Figure 11(b)), showing a similar phase transition
behavior for various subclasses of the GSensorDCSP problem with kv = 2.

 18

(a) (b)

Figure 11: Percentage of satisfiable instances depending on density parameters for the visibility
graph (Pv) and the compatibility graph (Pc): (a) Plot for different values of Pc and Pv ; (b) Plot for

equal Pc and Pv.

Figure 12: Mean solution time with respect to Pc and Pv for the AWC on instances with 25 sensors, 5

mobiles, kc = 1 and kv = 2.

Consistently with the general SensorDCSP, we observe that the phase transition coincides
with the region where the hardest instances occur. For instance, Figure 12 shows the
mean solution time with respect to the density parameters Pc and Pv for the problem
instances with 25 sensors, 5 mobiles, kc = 1 and kv = 2. Somewhat less expected result is
depicted in Figure 13 for the case of kv = 1 (and kc = 1). Recall that we analytically
proved this problem class to be polynomial. The actual proof is by a reduction to the
problem of feasible integral flow in bipartite graphs. Despite the fact that AWC has no
explicit connection with the algorithms for the latter problem, Figure 13(b) shows that
these instances are easy for AWC as well.

 19

 (a) (b)

Figure 13: (a) Percentage of satisfiable instances and (b) Mean solution time for the AWC on
(polynomial) instances with 25 sensors, 5 mobiles, kc = 1 and kv = 2.

For the second experiment with the AWC algorithm, we consider different sets of
instances for several orders of the problem (size of the grid), and several levels of
decomposition (visibility and compatibility limitations). In particular, we consider grids
of 25, 36, 49, 64, 81, and 100 sensors (N = 5, 6, 7, 8, 9, 10), tracking 5, 7, 9, 12, 15 and
18 mobiles, respectively, giving us an approximately constant ratio between the number
of mobiles and the number of sensors for each case. Note that N = 10 was the largest
problem size we were able to deal with using the CNCL (Communication Networks
Class Library) simulator [JBP96]. The constrainedness of visibility and compatibility
graphs is kept equal (kc = kv = k), and different sets correspond to k equal 2, 3, 4, and 5.
Each set of problem instances corresponding to a particular pair of values (N, k) contains
30 instances. The important point is that all the problem instances, in all the sets (N, k),
have been selected from the corresponding phase transition regions with respect to the
density parameters Pc and Pv, representing the regions of the hardest problem instances
(as it was shown in Figures 11(a) and 12. (The phase transition regions for every pair (N,
k) have been determined in advance.)

The mean solution time for satisfiable instances in this experiment is plotted in Figure 14
as a function of N, where Figures 14(a), (b) and (c) depict this graphs in logarithmic scale
for the problem instances with k = 2,3, k = 3,4, and k = 4,5, respectively, while Figure
14(d) presents the whole picture in the linear scale. We observe that the problem
scalability with N degrades dramatically as k increases, but it can be considered as
reasonable for k = 2 and k = 3. In order to capture the exponential behavior of AWC on
these problems, Figures 14(a-c) depicts the obtained measures, showing 95% confidence
interval of the samples in logarithmic scale, as well as their corresponding linear
regression plots. These plots have been represented in three different interrelated pictures
in order to facilitate a pair-wise comparison.

Two conclusions can be drawn from Figure 14. First, it is easy to see that the slopes of
the regression lines increase with k. For our set of results, the obtained slopes are
0.03, 0.202, 0.213 and 0.293 for k = {2,3,4,5}, respectively. Second, the exponential
dependence of the mean solution time on N seems to fit well according to the

 20

experiments. In particular, the obtained mean square error of the regressions is 0.039
0.04, 0.002, and 0.11 for k equal to 2, 3, 4 and 5, respectively.

Figure 14: Mean solution time with respect to the order of the problem (size of the grid) for AWC on

problem instances from the phase transition regions for kc = kv = 2,3,4,5.

2.7 Negotiation Techniques for Dynamic Systems

Considering the scalability of generic distributed negotiation protocols, our main concern
was about feasibility of striving to optimize in problems with real-life sensor/targets
settings, where time deadlines play a crucial role, and the targets being tracked are
moving. More formally, the task of a tracking system can be specified as a dynamic
GridDCSP-based problem, consisting of an ordered sequence of regular (static)
GridDCSP-based problems, which are:

• Defined over the same set of sensors and having the same compatibility graph,
• Possibly differ in their sets of mobile targets (and thus obviously in their visibility

graphs), and
• Each problem instance should be solved within a certain time window.

 21

Attempting to address this problem, we conducted a simulation with 100 sensors that
were supposed to track over time a continuously changing set of moving targets. The
parameters used in this experiment have been chosen to represent a network of radars
controlling some part of the airspace. As written, we considered a 10 × 10 uniform grid
of sensors, with the distance of 10 miles between any two adjacent sensors, while the
tracking area covered by these sensors is defined by the square of 8,100 square miles
enclosed by the grid. The compatibility graph and the visibility graphs for all the static
sub-problems were constructed to be 4-restricted (kv = kc = 4).

Figure 15: Graphical representation of the dynamic model, showing both the sensor grid, and the
extended area in which the mobiles are moving and from the borders of which the movement is

reflecting.

The targets in the simulation were moving in the grid according to independently chosen
linear trajectories, where the velocity of all the targets was Mach 2 (1,500 miles/hour).
Our intention was to keep a controlled, relatively tight ratio between the number of
targets and the number of sensors, thus we strived to keep the (now expected) number of
18 targets inside the grid. On the other hand, we wanted to model both targets leaving the
grid, and targets entering the grid, while keeping the movement of the targets
independent of one another. To achieve this, we extended the number of targets to 36,
setting these targets to move in (randomly initialized) linear trajectories inside an area
larger than our sensor grid. This area has been modeled by a square of 16,200 square
miles (twice as big as the square defined by the grid), and the center of this extended area
is exactly the center of the grid (see Figure 15). For the first static sub-problem in the
sequence, each target is located at a randomly chosen point inside this extended area, and
is annotated with a randomly chosen linear trajectory, that determines the position of this
sensor for the next sub-problem and so on. If, at some point, a target reaches the border of
the extended area, it reflects from the border at a randomly chosen angle, which
determines a new linear trajectory for this target. Such modeling of the target dynamics

 22

provides us with a continuously changing set of targets inside the grid, while the expected
size of this set is known (and is 18 targets in our experiment). The time window available
to solve each sub-problem has been set to 1.2 seconds, i.e. the minimum time spent by a
target inside a cell of the grid (given a speed of Mach 2) provides us at least 20 snapshots
of a target during its presence in a particular cell.

Figure 16: Dynamics of two problems, located at 70% and 50% of satisfiability ratio: (a) and (c)
show the cumulative probability distributions for the solution repairing and the naive solving

approach; (b) and (d) plot time differences to solve between the two approaches.

Figure 16 depicts the results for two dynamic GSensorDCSP problems P1 and P2, each
consists of 100 static GSensorDCSP sub-problems, where the subproblems for P1 (Figure
16(a-b)) and P2 (Figure 16(c-d)) were selected from the regions of Psat ª 0.7 (Pv = Pc =
0.47) and Psat ª 0.5 (Pv = Pc = 0.45), respectively. Psat ª 0.5 corresponds to the region of
the hardest instances. The dashed lines in Figures 16(a,c) depict the cumulative
probability distributions of solving Pi within a time window of t seconds. In P1, all the
solvable sub-problems were solved in less than 0.9 seconds, while in P2 all except one
sub-problems were solved within the time limit of 1.2 seconds.

 23

Observe that, if no assumptions can be made about the connection between the mobiles in
two subsequent sub-problems of Pi, there is no particular reason to treat the sub-
problems of Pi differently than just solving them one by one independently, using one of
the DisCSP algorithms. In what follows, we refer to this approach as to naïve solving of
dynamic GridDCSP problems, and the results depicted by the dashed lines in Figures
16(a,c) correspond to this straightforward approach. However, mobile dynamics are
typically far from being chaotic (linear trajectories in our experiment), i.e. the changes
between the subsequent sub-problems are governed by some clear model of mobile
dynamics. For instance, consider a network of radars controlling some airspace region.
In such an application, it is reasonable to assume that if an aircraft becomes trackable by
a sensor, then this aircraft is likely to remain trackable by this sensor in some near future.

One of our hypotheses was that continuity of the mobiles movement can be exploited in
improving the performance of the tracking systems. An approach that a priori seems to be
promising for dealing with such a problem P = {p1, …, pn} is to initialize the search for
pi, 1 < i £ n, by the solution already achieved for pi-1 (comparatively to starting from an
random assignment in AWC used in the naive approach). In what follows, we refer to this
approach as to solution repairing. Note that in this approach, nogoods are not kept and
are removed once a solution is obtained, so no additional synchronization is required
between agents.

The central question is whether the contribution of solution repairing (versus the naive
approach) is expected to be significant in real-life settings of both the mobiles dynamics,
and the time available to solve each one of the static sub-problems. One experiment
provides positive evidence to this question: The solid lines in Figures 16(a-c) depict the
cumulative probability distributions of solving Pi within a time window of t seconds
using the solution repairing approach. It is easy to see that solution repairing clearly
outperforms the naive approach, and Figures 16(b-d) illustrate this even better: For each
sub-problem pi, these graphs plot the difference between the times required to solve pi
using AWC from scratch and starting from the solution for pi-1, if this exists (Dt). More
interestingly, the results of our experiment show that the relative attractiveness of
solution repairing is higher in the region of harder instances. For instance, using solution
repairing, all the sub-problems of P2 were solved in less than 0.75 second. The reason
could be that small changes in the problem setting (as the changes between pi and pi+1 are
expected to be) usually will not change significantly the placement of the solutions in the
search tree. If so, then adopting solution repairing is likely to initialize the search at a
node that is close to a solution node in the search tree. Likewise, the contribution of this
property is likely to be more significant for sequences of harder problems, i.e. problems
that a priori have less alternative solutions.

 24

3. ANTS Autonomic Logistics - Resource Enabling in CAMERA

The CAMERA tool, developed by the ISI contractors in the scope of the autonomic
logistics ANTS project, is a real-time resource management architecture providing a basis
for integrating technologies developed by other contractors in the project. The general
problem addressed by CAMERA is this of scheduling a set of tasks, conflicting
requirements of which demand for various resources essential to fulfill the tasks. The
resources can be of various types and nature (e.g. consumable vs. usable, mutually
exclusive vs. sharable, etc.), and the tasks can have complex requirements involving
various types of resources. The practical benchmark problem that has been used for
development and testing for performance various components of the system is this of
scheduling flight operations of a combat squadron and/or a set of squadrons. This
specialized system, called SNAP, has been developed on top of the CAMERA generic
tool. In terms of this domain, the tasks represent numerous flight missions and the
resources stand for pilots, fuel, available time windows, etc.

The CAMERA tool integrates several alternative solutions for dealing with the core
problem, and one of these solutions is based on:

1. Encoding the problem using a Pseudo-Boolean (PB) encoding (performed by
the CAMERA sub-tool ATTEND, developed by A. Bugacov from ISI),

2. Solving the generated pseudo-boolean problem (PBP, for short) using an off-the-

shelf PB solver, or a specialized solver developed by the CIRL project
contractors. (While the behavior of different solvers is expected to vary on
various PBPs, the actual encoding is solver-independent).

These two stages of the PBP-based solution are depicted (in the framework of
CAMERA) in Figure 17 by the blue and purple frames, respectively.

While the ATTEND encoding addresses the core parts of safe, feasible scheduling and
resource allocation between the tasks, the PBP generated by ATTEND is more
constrained than the original problem (OP, for short). In this sense, any solution for the
generated PBP is a solution for OP, but not vice versa, and thus some of the potentially
valuable solutions for OP are sacrificed from the beginning. Below we describe the
reasons for such a difference between PBP generated by ATTEND and the original
problem that is provided to CAMERA.

Bridging this gap between the original problem and its pseudo-boolean encoding has
been defined to be of highest interest of the SNAP/CAMERA users, and thus this problem
was of our main focus.

 25

Figure 17: CAMERA/ATTEND architecture.

3.1 Resource Enabling – Formal Problem Statement

As we already mentioned, the flight tasks provided to SNAP have several requirements
that require pilots as their main resources. Unlike other resources, not every pilot can be
assigned to a requirement of a given task, but only pilots that fulfill essential skills. These
essential skills are a static property of the task requirements and they are drawn from a
static set of different skills 1Q { , , }mQ Q= … . More specifically, the essential skills of a
task T (in what follows, by task we mean a requirement of a task) is a (possibly empty)
set (T)Pre which is an subset of Q , representing a set of skills that a pilot should have in
order to be counted as qualified for the task T .

In turn, in order to reason about pilots’ qualifications, each pilot X is annotated with a
(similarly defined) set (X) Q⊆Have describing the qualification history of X . In the
SNAP flight operations scheduling problem, no pilot can be assigned to a task without
having the skills required by the task. More formally, a pilot X can be assigned to a task
T if and only if (T) (X)⊆Pre Have .

The crucial part of the flight operations scheduling problem is that the tasks performed by
the pilots provide them with additional qualifications. Note that the generalization of this
property is not unique to SNAP, but appears in many real-life scheduling problems (e.g.,
long-term students/courses allocation). More specifically, each task T is associated with
a (possibly empty) set of skills (T) Q⊆Provides , such that if a pilot X is assigned to
perform T , then after performing T the qualification history of X is updated as follows:

(X) : (X) (T)= ∪Pre Pre Provides

 26

The ATTEND PB encoder was taking into account only the qualification history of the
pilots that exists prior to the scheduled set of tasks. Therefore, the pseudo-boolean
satisfability problem generated by ATTEND ignored the skills that can be dynamically
obtained by the pilots as a result of participating in tasks to which they are getting
assigned.

Our group worked on overcoming the above limitation by taking advantage of the skills
dynamically obtained by the pilots within the scheduled set of tasks. This extension turns
out to be extremely non-trivial as it extends the general CAMERA/SNAP problem from
the scheduling to a mixed scheduling & planning [ST94]. In addition, for several
software legacy and research reasons, we have attempted to overcome the above
limitation of CAMERA without affecting the framework of ATTEND pseudo-boolean
encoding.

3.2 Resource Enabling via Extended Pseudo-Boolean Encoding

The resource enabling pseudo-boolean encoding that we have developed properly
extends the ATTEND encoding currently used in CAMERA. Below we list the central
axioms of our extension, omitting several technical details that ease the presentation.

First, let us introduce the variables used in the encoding. and for each skill QQ∈ :

Variable Semantics

,i kX

For each qualifiable resource X (i.e., pilot in case of SNAP), for each task
iT and for each time slot k, the variable ,i kX represents assigning X to iT

at time slot k. Note that the variables ,i kX are already used by the current
ATTEND pseudo-boolean encoding.

,
k

X Q

For each qualifiable resource X, for each skill Q , and for each time slot k,
the variable ,

k
X Q encodes the proposition that at the time slot k, X has

the skill Q in his qualification history.

Our first axiom conditions assignment of resources to tasks on the skills that are required
by the latter. More formally, for each task iT , for each resource X, and for each time slot
k, we have:

 ,
()

,
i

i kk
Q T

X Q X
∈

→∪
Pre

 27

encoded 1 as:

 ,
()

,
i

i i k ik
Q T

X X Qα α
∈

+ ≥∑
Pre

 (1.3)

where ()i iTα = Pre . Informally, Eq. 1.3 encodes an intuitive axiom that if X does not
have the skills essential to perform iT , then X should not be assigned to iT .

The subsequent two axioms correspond to the planning part of the problem, and in
particular they embed the planning “frame axioms”. The first planning axiom is that for
each resource X, for each skill Q, and for each time slot k, we have:

 , 1
()

, ,
i

i kk k
T Q

X Q X X Q
+

∈

∨ →∪
Provide

where ()QProvide stands for the set of all tasks T such that ()Q T∈Provides . This
axiom is encoded as:

 ,1
()

, ,
i

Q i k Qk k
T Q

X Q X Q Xβ β
+

∈

+ + ≥∑
Provide

 (1.4)

where () 1Q Qβ = +Provide . Informally, this axiom states that “if you already have a
certain skill, or now you are doing something that provides this skill, then at the next time
slot you will have this skill”.

The second planning axiom accomplishes the first planning axiom, and it states that for
each resource X, for each skill Q, and for each time slot k, we have:

 , 1
()

, ,
i

i kk k
T Q

X Q X X Q
+

∈

∧ →∩
Provides

encoded as:

 ,1
()

, , 1
i

i kk k
T Q

X Q X Q X
+

∈

+ + ≥∑
Provide

 (1.5)

1 In what follows, by ∪ or ∨ , and by ∩ or ∧ , we denote disjunction and conjunction, respectively.

 28

Informally, this axiom states that “if you don’t have a certain skill, and you are not doing
something that will provide you this skill, then at the next time slot you still will not have
this skill”.

Together with some additional technical details, this set of axioms (added to the current
system of ATTEND’s pseudo-boolean constraints) provides necessary and sufficient
conditions for correct resource enabling within the CAMERA tool and the SNAP system.

3.3 Extended Pseudo-Boolean Encoding with Changing Time
Resolution

Above we described the model of pilot qualifications, allowing the pilots to perform these
tasks. The flight tasks provided to SNAP have several requirements that in
particular require pilots as their main resources. Unlike other resources, not every pilot
can be assigned to a requirement of a given task, but only pilots that fulfill some essential
skills. Prior to having extended encoding E1 described in Section 3.2, the ATTEND PB
encoder took into account only the qualification history of the pilots that exists prior to
the scheduled set of tasks. Overcoming the above limitation by taking advantage of the
skills dynamically obtained by the pilots within the scheduled set of the tasks has been
addressed within the extended encoding E1. Here we extend this encoding to deal with
changing time resolution, and henceforth this enhanced encoding is denoted E2.

The problem of a deep time horizon is solved in ATTEND via abstraction of the time
resolution. Before the abstraction, for each time slot and for each pilot, we have
information whether this pilot is available within this time slot. As a result of time
abstraction, the availability of a pilot within a certain time slot can be replicated,
schematically resulting in having several instances of the same pilot within a particular
time slot. The problematic aspect of this problem representation is that:

1. From the scheduling point of view, each pilot instance is treated as an
independent pilot, but

2. From the resource enabling point of view, all the instances of the same pilot

should be treated as the same pilot (i.e. skills obtained by one pilot instance
should be propagated to all other instances).

Because of this asymmetry, the naive approach of using the extended encoding E1 at the
level of pilot instances (instead of at the level of pilots) is incomplete, and the quality of
the solutions provided by this approach is expected to be extremely low. Therefore, we
have developed a new formal model for resource enabling (E2) that successfully deals
with anytime abstraction. Likewise, for several software legacy and research reasons, E2
has no affect on the framework of ATTEND pseudo-boolean encoding, leaving the latter
completely resource enabling independent.

 29

Below we list the central axioms of the E2 resource enabling model, leaving out several
technical details to ease the presentation.

First, let us introduce the variables used in the encoding. The main difference here
comparatively to E1 is the variables ()

,
j

i kX , corresponding to the instance of the pilots.
Formally, for each pilot X and for each skill QQ∈ :

Variable Semantics

iT Task fulfillment variable: true if iT is successfully scheduled and false
otherwise.

()
,
j

i kX

For each qualifiable resource X (i.e., pilot in case of SNAP), for each task

iT , for each time slot k, and for each instance j of X available in time slot
k, the variable ()

,
j

i kX represents assigning the instance j of X to iT at time
slot k.

,
k

X Q

For each qualifiable resource X, for each skill Q , and for each time slot k,
the variable ,

k
X Q encodes the proposition that at the time slot k, X has

the skill Q in his qualification history.

Now, let us introduce the axioms forming the formal model of E2, together with pseudo-
boolean realization of those axioms. Note that the principles behind the ideas of the E2
axioms bare some similarity with these of E1. However, the axioms themselves and their
PB realization are completely different in E2 compared to E1.

The first axiom that we introduce into the problem conditions assignment of resource
instances to tasks on the skills that are required by the latter. More formally, let ,X kI be
the number of instance of X available in time slot k. Now, for each resource X and time
slot k, if ,X kI > 0, then, for each task iT , we have

,
()
,

() 1

,
X k

i

I
j

i kk
Q T j

X Q X
∈ =

→∪ ∩
Pre

This axiom is encoded as a set of ()iTPre constraints. Namely, for each ()iQ T∈ Pre ,
we have:

,
()

, , ,
1

,
X kI

j
X k i k X kk

j

I X Q X I
=

+ ≥∑ (1.6)

 30

Informally, Eq. 1.6 encodes the requirement that if X does not have the skills essential to
perform iT , then no instance of X can be assigned to iT .

The subsequent two axioms correspond to the planning part of the problem, and in
particular they embed the planning “frame axioms”. Informally, the first planning axiom
states that “if the resource already have a certain skill, or currently one of this resource
instances is involved in a task that provides this skill, then at the next time slot the
resource will have this skill”.

Formally, for each resource X, and for each time slot k, the axiom is as follows.
If ,X kI > 0, then, for each skill Q, we have:

,
()
, 1

1 ()

, ,
X k

i

I
j

i kk k
j T Q

X Q X X Q
+

= ∈

∨ →∪ ∪
Provide

where ()QProvide stands for the set of all tasks T such that ()Q T∈Provides . This
axiom is encoded as:

,
()

, , ,1
() 1

, ,
X k

i

I
j

Q X i k Q Xk k
T Q j

X Q X Q Xβ β
+

∈ =

+ + ≥∑ ∑
Provide

(1.7)

where

 , , | () | 1Q X X kI Qβ = ⋅ +Provide

Otherwise, if ,X kI = 0, then, for each skill Q, we have:

1
, ,

k k
X Q X Q

+
→

encoded as:

 1
, , 1

k k
X Q X Q

+
+ ≥

The second planning axiom informally states that “if the resource don’t have a certain
skill, and non of its instances is involved in a task that provides this skill, then at the next
time slot the resource still will not have this skill”. This axiom accomplishes the first

 31

planning axiom, and, formally, for each resource X, and for each time slot k, the axiom is
as follows.

If ,X kI > 0, then, for each skill Q, we have:

,
()
, 1

() 1

, ,
X k

i

I
j

i kk k
T Q j

X Q X X Q
+

∈ =

∧ →∩ ∩
Provide

encoded as:

,
()
,1

() 1

, , 1
X k

i

I
j

i kk k
T Q j

X Q X Q X
+

∈ =

+ + ≥∑ ∑
Provide

 (1.8)

Otherwise, if ,X kI = 0, then, for each skill Q, we have:

1
, ,

k k
X Q X Q

+
→

encoded as

1
, , 1

k k
X Q X Q

+
+ ≥

Together with some additional technical details, this set of axioms (added to the current
system of ATTEND’s pseudo-boolean constraints) provides necessary and sufficient
condition for correct resource enabling with time abstraction within the CAMERA tool
and the SNAP system. However, for the proper integration with the core ATTEND
pseudo-boolean encoding, we extend our system with two additional sets of auxiliary
constraints. These sets of constraints ensure that the solution to the PB problem will
contain no redundant assignments of resource instances to tasks. This requirement is not
necessary for the basic ATTEND/CAMERA encoding, but it is necessary for resource
enabling with time abstraction.

The first set of auxiliary constraints is specified as follows. For each task iT , we have:

 32

,

,

()
,

: 0 1

X k

X k

I
j

i i k i
X k I j

T X α
> =

−ℑ⋅ + ≤∑ ∑ ∑ (1.9)

where ℑ is the total number of elements in the internal summation, and

 i i iα η δ= ⋅

where iη is the number of resources required by iT , and iδ is the length of iT (in time
slots).

The second set of auxiliary constraints accomplishes the first one by requiring:

,

,

()
,

: 0 1

0
X k

X k

I
j

i i k
X k I j

T X
> =

−ℑ⋅ + ≤∑ ∑ ∑ (1.10)

where ℑ is defined as above.

 33

3.5 Complexity, Implementation, and Integration

Taking advantage of the skills dynamically obtained by the pilots within the scheduled
set of the tasks, especially in face of abstracting the time axis, turns to be extremely non-
trivial as it extends the general CAMERA/SNAP problem from the scheduling to a mixed
scheduling & planning [SFJ00]. The conceptual difference between planning and
scheduling can be formalized as follows:

• In scheduling, all the interdependencies between the scheduled entities, and the
properties of the resources are completely static. Therefore, assigning some tasks
can only make other tasks more constrained.

• In planning, the opposite is true, thus constrainedness of the problem is not

monotonic anymore, and assigning tasks can make other tasks less/differently
constrained.

From the worst-case complexity point of view, planning is harder than scheduling
(PSPACE-complete [Byl94] vs. NP-complete [GJ78]). By enhancing the core
CAMERA/ATTEND problem with resource enabling we create hybrid
planning/scheduling problem, thus careful exploiting of the problem structure should be
done in order to avoid dramatic performance degradation. Since the enhanced problem is
represented similarly to the original problem in pseudo-boolean encoding, the complexity
blow-up can appear in the size of the problem description (i.e. number of constraints
required to encode the problem). Below we show that this is not the case with the E2
encoding.

Table 3 summarizes the parameters of the problem, and Table 4 presents the description
complexity of the (1) original problem, (2) extension, and (3) combination of (1) and (2).

n # tasks
m # resources
k maximal # instances for a resource
t # time slots (after abstraction)
q # dynamically obtainable skills

Table 3: Parameters of the Autonomous Logistic problems.

 ATTEND E2 ATTEND + E2

Variables O(nmkt) O(qmkt) O(mkt(n+q))
Constraints O(nmkt) O(qnmkt) O(qnmkt)

Table 4: Description complexity of the encodings.

 34

(a)

(b)

Figure 18: Snapshots of the CAMERA tool presenting results of negotiations without (a) and with (b)

extended encoding E2.

 35

Table 4 shows that, from ATTEND to ATTEND+E2 the size of the problem description
grows linearly in the number of different dynamically obtainable skills. The evaluation of
the extended encoding within the CAMERA tool shows that the real-life enhanced
problems are solvable without exponential blow-up in time complexity.

The extended encoding E2 has been completely implemented, integrated and tested
within the CAMERA tool, and evaluated on the real-life problems of scheduling flight
operations of a combat squadron and/or a set of squadrons. The results of the evaluation
(demonstrated during the ANTs demo on June, 3, 2003) clearly showed that the extended
encoding enhanced the qualitative capabilities of the CAMERA tool. For instance,
consider Figure 18 that presents screen snapshots of the CAMERA tool. Both figures
show the optimal schedules produced by a pseudo-boolean solver for the same flight
operations scheduling problem on a squadron level. However, Figure 18(a) shows the
resulting schedule for the plain ATTEND encoding of the problem, while Figure 18(b)
shows the resulting schedule for the E2-enhanced encoding. In the first case, the optimal
schedule left 3 (out of 17) tasks unscheduled, while in the second case all 19 tasks have
been scheduled successfully.

4. Identifying and Exploiting Critical Resources

Our collaboration with ISI on extending CAMERA/ATTEND system (specifically,
extending the pseudo-boolean encodings) inspired a novel research devoted to identifying
and exploiting critical resources.

Most interesting AI formalisms for reasoning, planning, and learning have been shown to
be worst-case intractable. Such negative complexity results led to an extensive search for
tractable subclasses of the general formalisms (e.g. see the work of our group on
GridDCSP discussed in Section 2.5). Unfortunately, these tractable subclasses are often
too restrictive for real-world applications, thus we saw the emergence of a more practical
approach to computationally hard problems in AI, with the introduction of fast
satisfiability solvers and fast constraint based reasoning methods. Somewhat surprisingly,
on practical problem instances these methods scale well beyond what one might expect
based on a formal complexity analysis. In fact, current state-of-the-art SAT solvers can
handle problem instances, as they arise in scheduling, planning, and finite model-
checking, with up to a million variables and five million clauses [Chaff01]. The success
of these methods appears to hinge on a combination of two factors:

1. Practical combinatorial problem instances generally have a substantial amount of

(hidden) tractable sub-structure, and

2. New algorithmic techniques exploit such tractable structure, through, e.g.,

randomization and constraint learning.

 36

These developments suggest that a standard worst-case complexity analysis does not
capture well the true complexity of typical problem instances encountered in practical
applications. Theoretical computer scientists have been well-aware of the limitations of
worst-case complexity results and have explored alternatives, such as average-case
complexity and smoothed analysis [ST01]. In average-case analysis, one studies the
computational cost of solving problem instances drawn from a predefined problem
distribution. Such an analysis clearly can provide valuable insights. However, the
relatively basic distributions for which one can obtain average-complexity results appear
to be quite far removed from the instance distributions one encounters in practice. In fact,
formally defining the distribution of real-world problem instances is generally an open
problem in itself. Smoothed analysis attempts to unify worst-case and average-case, but
suffers from limited applicability: it works well on algorithms for problems defined over
dense fields such as the simplex algorithm, but the applicability of smoothed analysis on
discrete problem domains is unclear.

In our work, we pursued an alternative approach of identifying special structural
properties common to known problem instances and showing how clever algorithms can
exploit such properties. Informal insights about what such special structure might be are
currently already used in the design of, for example, branching and variable choice
heuristics in combinatorial search methods. A common feature of these techniques is an
understanding that different groups of variables in a problem encoding often play quite
distinct roles. For example, at the highest level, one can distinguish between dependent
and independent variables. The dependent or auxiliary variables are needed to obtain
compact problem encodings but the true combinatorics arises from the independent
variables; e.g., the independent variables in an encoding of a planning domain represent
the various actions applicable in a given state of the world, whereas the dependent
variables encode the consequences of selecting a particular action. Another powerful
intuition in the design of search methods is that one wants to select variables that simplify
the problem instance as much as possible when these variables are assigned values. This
intuition leads to the common heuristic of branching on the most-constrained-variable
first.

These general insights have been incorporated in state-of-the-art constraint solvers, and
their effectiveness has been demonstrated empirically on a significant number of
benchmark problems. However, a more formal underpinning explaining the practical
success of these strategies has been lacking. In our work [WGS03a,WGS03a], we
introduced a formal framework directly inspired by these techniques and present rigorous
complexity results that support their effectiveness.

1. We formalized the notion of critical resources, introducing the notion of
backdoor variables. This is a set of variables for which there is a value
assignment such that the simplified problem can be solved by a poly-time
algorithm, called the ``sub-solver''. The sub-solver captures any form of poly-time
simplification procedure as used in current CSP solvers. We also consider the
notion of a strong backdoor where any setting of the backdoor variables leads to a
poly-time solvable sub-problem. The set of all problem variables forms a trivial

 37

backdoor set, but many interesting practical problem instances possess much
smaller backdoors and stronger backdoors.

2. We studied backdoors in several practical problem instances, and identify

backdoors that contain only a fraction of the total number of variables. For
example, we showed that the CSP encoding of a standard benchmark logistic
planning problem contains a backdoor with only 12 variables out of a total of
nearly 7,000 variables. When given a set of backdoor variables of a problem
instance, one can restrict the combinatorial search by branching only on the
backdoor variables and thus search a drastically reduced space.

3. In general, finding the set of backdoor variables for a problem instance is itself a

computationally hard problem. The key contribution of our work is that we
formally showed that backdoor variables still provide a concrete computational
advantage, even when taking into account the cost of searching for such
variables. We analyze three scenarios:

a. A deterministic scenario with an exhaustive search of backdoor sets. We

show that one obtains provably better search complexity when the
backdoor contains up to a certain fraction of all variables.

b. A randomized search technique, which in effect repeatedly guesses
backdoor sets. We showed that this technique provably outperforms a
deterministic search.

c. Variable selection heuristic, which provides guidance towards the
backdoor set. This strategy can yet further reduce the search space.

B(n) deterministic randomized heuristic
/n k small exp(n) smaller exp(n) tiny exp(n)

()log()O n (log())

log()

O n
n

n

(log())

log()

O n
n

n

poly(n)

(1)O poly(n) poly(n) poly(n)

Table 5: Time bounds for solving CSPs in the various scenarios considered in this work.

Table 5 gives a high-level summary of the results, showing time bounds for solving CSPs
in the various scenarios considered in this work. B(n) is an upper bound on the size of the
smallest backdoor, where n is the number of variables in the problem. k is a fixed
constant. Our empirical results suggest that for practical instances the backdoor is often a
relatively small fraction of n, e.g., n/100, or even of size log(n). By exploiting restart
strategies, we can identify a polynomially solvable case when the backdoor contains at
most log(N) variables. We believe that this final scenario is closest to the behavior of
current effective constraint solvers. Our formal analysis also suggests several novel
algorithmic strategies that warrant further empirical exploration.

 38

5. Conclusions

The work of our group in the ANTS program has been devoted to connecting frameworks
for multi-agent negotiation-based systems with the research on analytical and empirical
computational complexity. Our general goal was to improve the expressiveness and
scalability of complex distributed systems by exploiting computational hardness
awareness in both the design and operation of these systems. In particular, our goal was
to study the impact of problem structure on the computational complexity of the problem,
and to exploit this connection in both problem modeling and solving.

Considering our work in both ANTS Sensor Networks and Autonomic Logistics
domains, we believe that our goals were successfully achieved. On the one hand, our
formal and empirical results were motivated and shown to be directly applicable to the
benchmark domains of the program. For instance, our formal modeling techniques
improved the robustness and scalability of the prototype multi-agent systems for
autonomic logistics, and our insights on “initiated message delays” affected the
negotiation protocols developed by other contractors in the program. On the other hand,
our domain specific results provided us with a platform for further generalization, leading
to several generic research contributions that have been already used in the wide
scientific community.

 39

References

[Grid04] Béjar, R., Fernández, C., Domshlak, C., Gomes, C. P., Krishnamachari,

B., Selman, B., and Valls, M., Sensor networks and distributed CSP:
Communication, computation and complexity”, Artificial Intelligence,
2004. (in print).

[BKGS01] Bejar, R., Krishnamachari, B., Gomes, C., and Selman, B, Distributed
constraint satisfaction in a wireless sensor tracking system, In Proceedings
of the IJCAI-01 Workshop on Distributed Constraint Reasoning, 2001.

[Byl94] Bylander, T., The computational complexity of propositional STRIPS
planning, Artificial Intelligence, 69(1-2). 165-204, 1994.

[CB97] Crovella, M. and Bestavros, A., Self-similarity in World Wide Web
traffic: Evidence and possible causes, IEEE Transactions on Networking,
5(6), 835-846, 1997.

[GJ78] Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, 1978.

[GSK98] Gomes, C. P., Selman, B., and Kautz, H. A., Boosting combinatorial
search through randomization, In Proceedings of the National Conference
on Artificial Intelligence, 431-437, 1998.

[JBP96] Junius, M., Buter, M., Pesch, D, CNCL - Communication Networks Class
Library. Aachen University of Technology. 1996.

[LTWW94] Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V., On the
self-similar nature of Ethernet traffic, IEEE Transactions on Networking,
2(1), 1-15, 1994.

[MZKST99] Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B.,and Troyansky,
L., Determining Computational Complexity from Characteristic Phase
Transitions, Nature, 400, 133-137, 1999.

[Chaff01] Moskewitcz, C., Madigam, C., Zhao, Y., Zhang, L., and Malik, S., Chaff:
Engineering an Efficient SAT Solver, In Proceedings of 41st Design
Automation Conference, 2001.

[Paxson97] Paxson, V., Fast, approximate synthesis of fractional Gaussian noise for
generating self-similar network traffic, Computer Communication Review,
27(5), 5-18, 1997.

[ST94] Samorodnitsky, G. and Taqqu, M. S., Stable Non-Gaussian Random
Processes, Chapman & Hall, 1994.

 40

[SFJ00] Smith, D., Frank, J., and Jonsson, A., Bridging the gap between planning

and scheduling, Knowledge Engineering Review, 15(1), 2000.

[ST01] Spielman, D., and Teng, S.-H., Smoothed analysis: Why the simplex
algorithm usually takes polynomial time, In Proceedings of the 33rd ACM
Symposium on Theory of Computing, 296-305, 2001.

[Walsh02] Walsh, T., From P to NP: COL, XOR, NAE, 1-in-k, and Horn SAT, In
Proceedings of The Eighteenth National Conference on Artificial
Intelligence, 695-700, 2002.

[WGS03a] Williams, R., Gomes, and C., Selman, B., Backdoors to typical case
complexity, In Proceedings of International Joint Conference on Artificial
Intelligence, 2003.

[WGS03b] Williams, R., Gomes, C., and Selman, B., On the connections between
backdoors, restarts, and heavy-tailedness in combinatorial search, In
Proceedings of the Sixth International Conference on Theory and
Applications of Satisfiability Testing, 2003.

[Yokoo95] Yokoo, M., Asynchronous weak-commitment search for solving
distributed constraint satisfaction problems, In Proceedings of the First
International Conference on Principles and Practice of Constraint
Programming, 88-102, 1995.

[YDIK92] Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K., Distributed
constraint satisfaction for formalizing distributed problem solving, In
Proceedings of the Twelfth IEEE International Conference on Distributed
Computing Systems, 614-621, 1992.

[YDIK98] Yokoo, M., Durfee, E. H., Ishida, T. and Kuwabara, K., The distributed
constraint satisfaction problem: Formalization and algorithms, IEEE
Transactions on Knowledge Data Engineering, 10(5), 673-685, 1998.

[YH00] Yokoo, M. and Hirayama, K., Algorithms for distributed constraint
satisfaction: A review, J. Autonomous Agents and Multi-Agent Systems,
3(2), 198-212, 2000.

